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The arc metric is an asymmetric metric on the Teichmüller space T (S) of a surface S
with nonempty boundary. It is the analogue of Thurston’s metric on the Teichmüller 
space of a surface without boundary. In this paper we study the relation between 
Thurston’s compactification and the horofunction compactification of T (S) endowed 
with the arc metric. We prove that there is a natural homeomorphism between 
the two compactifications. This generalizes a result of Walsh [20] that concerns 
Thurston’s metric.
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1. Introduction

Let R be an oriented surface of genus g with n punctures and let Tg,n be the Teichmüller space of R. We 
shall view Tg,n as a space of equivalence classes of metrics on R. Thurston introduced a compactification 
of Tg,n, which is used in his classification of diffeomorphisms of surfaces [19]. The boundary of this com-
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pactification is the space of projective classes of measured foliations on R. The action of the mapping class 
group on Tg,n extends continuously to Thurston’s boundary.

There is an asymmetric Finsler metric on Tg,n defined by Thurston [18]. The geodesics of this metric are 
families of extremal Lipschitz maps between hyperbolic surfaces. The space Tg,n endowed with Thurston’s 
metric is a complete (asymmetric) geodesic metric space. Unlike the classical Teichmüller metric, Thurston’s 
metric is not uniquely geodesic. A special kind of geodesics for this metric, called stretch lines, are constructed 
by “stretching” along complete geodesic laminations of hyperbolic surfaces, that is, geodesic laminations 
whose complementary regions are all ideal triangles. The introduction of this metric paved the way to a 
whole set of new interesting questions on the geometry of Teichmüller space [12,13].

Thurston’s compactification and Thurston’s metric are closely related to each other. The connection 
between Thurston’s compactification and the geodesic rays of Thurston’s metric was shown by Papadopoulos 
[10]. To state things more precisely, let μ be a complete geodesic lamination. (Note that we do not assume 
that μ carries a transverse invariant measure of full support.) Associated to μ is a global parametrization 
of Tg,n, called the cataclysm coordinates, sending Tg,n to the set of measured foliations transverse to μ. 
The cataclysm coordinates extend continuously to Thurston’s boundary (see [10, Theorem 4.1] for a more 
precise statement). In particular, a stretch line is determined by a measured foliation F that is transverse 
to μ (called the horocyclic foliation associated to the stretch line) and this stretch line converges to the 
projective class of F in Thurston’s boundary [10].

Walsh [20] showed that Thurston’s compactification of Tg,n can be naturally identified with the horofunc-
tion compactification with respect to Thurston’s metric. Horofunction boundaries have the property that 
each geodesic ray converges to a point on the boundary. As a corollary, every geodesic ray for Thurston’s 
metric converges to a point in Thurston’s boundary.

Another direct corollary of the result of Walsh [20] is that any isometry of Tg,n equipped with Thurston’s 
metric induces a self-homeomorphism of Thurston’s boundary. On the other hand, there is a “detour cost” 
distance (which is also asymmetric and which may take the value infinity) defined on Thurston’s boundary 
which is preserved by the isometries of Tg,n, equipped with Thurston’s metric. By calculating the detour 
cost between any two projective measured foliations, Walsh [20] proved that, with some exceptional cases, 
the isometry group of Tg,n equipped with Thurston’s metric is the extended mapping class group.

In this paper, we compare Thurston’s compactification of the Teichmüller spaces of surfaces with bound-
ary with the horofunction boundary of that space with respect to an appropriate metric, the arc metric
introduced in [8].

Thurston’s asymmetric metric can be defined by a formula which compares lengths of simple closed 
curves computed with the metrics representing the two elements in Teichmüller space (§4). The passage 
to the definition of the arc metric, using lengths of arcs, is very natural, but there are geometric questions 
whose solutions are far from obvious. We mention for instance that it is unknown whether the arc metric 
is Finsler, or whether it realizes the extremal Lipschitz constant of homeomorphisms between hyperbolic 
surfaces, as in the case of Thurston’s metric on Teichmüller spaces of surfaces without boundary. We 
also do not know whether two points in Teichmüller space of a surface with boundary are joined by a 
concatenation of stretch lines. Working with arcs on a surface with boundary, instead of simple closed 
curves, involves several complications and requires new topological and geometrical tools, and this makes 
this subject interesting.

We now present our results in more detail.
Let S be a hyperbolic surface of finite area with totally geodesic boundary components and let T (S)

be the Teichmüller space of S. There is an analogue of Thurston’s compactification of T (S) defined using 
hyperbolic length and intersection number with simple closed curves and simple arcs on S (see §3). The 
boundary of such a compactification is identified with the space of projective measured laminations on S, 
which is homeomorphic to a sphere (see Theorem 3.8 and Proposition 3.9).
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We recall the definition of the arc metric in §5 and prove the following:

Theorem 1. Thurston’s compactification of T (S) can be identified with the horofunction compactification of 
the arc metric on T (S) by a natural homeomorphism.

The proof of Theorem 1 depends on the study of the asymptotic behavior of the geodesic lengths of 
simple closed curves and arcs along certain paths on T (S). In particular, for every measured lamination μ, 
we will construct (Lemma 6.7) a path Xt, t ∈ [0, +∞) in T (S) such that each simple closed curve or simple 
arc α on S satisfies

eti(μ, α) − C ≤ �α(Xt) ≤ eti(μ, α) + Cα,

where C > 0 is a uniform constant and Cα > 0 is a constant depending on α.

Remark 1.1. It is reasonable to conjecture that, in the case where S has nonempty boundary, the isometry 
group of T (S) endowed with the arc metric is the (extended) mapping class group Mod(S), with the usual 
exceptional surfaces that appear in the theory without boundary. As a matter of fact, if Sd = S ∪ S̄ is the 
double of S, obtained by taking the mirror image S̄ of S and by identifying the corresponding boundary 
components by an orientation-reversing homeomorphism, then Sd is a surface without boundary. We know 
that such a doubling induces an isometric embedding from T (S) to T (Sd) (see §2). As a result, one may hope 
that Walsh’s argument can be applied. However, the proof of Walsh depends on Thurston’s construction of 
stretch maps, which does not apply as such to T (S) when the surface S has boundary components. A further 
understanding of Thurston’s compactification of T (S) and the action of isometry group may require some 
generalized notion of (appropriately defined) “stretch map” for surfaces with boundary.

2. Preliminaries

Throughout this paper, we denote by S = Sg,n,p a connected orientable surface of finite type, of genus 
g with n punctures and p boundary components. We always assume that the Euler characteristic χ(S) =
2 − 2g − n − p is < 0 and that the boundary of S, denoted by ∂S, is nonempty.

A hyperbolic structure on S is a complete metric of constant curvature −1 such that

(i) each puncture has a neighborhood which is isometric to a cusp, i.e., to the quotient of {z = x + iy ∈
H

2 | y > a}, for some a > 0, by the group generated by the translation z �→ z + 1;
(ii) each boundary component is a closed geodesic.

A marked hyperbolic surface is a pair (X, f), where X is a hyperbolic structure on S and f : S → X

an orientation-preserving homeomorphism. The map f is called a marking. Two marked hyperbolic surfaces 
(X1, f1) and (X2, f2) are said to be equivalent if there exists an isometry h : X1 → X2 which is homotopic 
to f2 ◦ f−1

1 (note that in our setting, homotopies fix each boundary component setwise but they do not 
need to fix it pointwise). The reduced Teichmüller space T (S) is the set of equivalence classes of marked 
hyperbolic structures on S.

Remark 2.1. Since all Teichmüller spaces that we consider are reduced, we shall omit the word “reduced” 
in our exposition. Furthermore, we shall sometimes denote an equivalence class of (X, f) in T (S) by X, 
without explicit reference to the marking or to the equivalence relation.

Let Sd be the double of S and T (Sd) the Teichmüller space of Sd. Note that Sd is a surface of genus 
2g + p − 1 with 2n punctures, without boundary. We construct a natural embedding of T (S) into T (Sd).
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For any equivalence class of marked hyperbolic structures [(X, f)] ∈ T (S), we let X be the isometric 
mirror image of X. The hyperbolic surface X is equipped with an orientation-reversing isometry J : X → X. 
Then Xd is the hyperbolic surface obtained by taking the disjoint union of X and X, and gluing ∂X with 
∂X by the restriction of J to the boundary. This map J extends to an involution of Xd which we still denote 
by J . Taking the double of a marked Riemann surface with boundary is a well-known operation, and it was 
already considered in Teichmüller’s paper [14]. We are dealing here with the analogous operation, at the 
level of the associated hyperbolic structures. To determine a point in T (Sd), we have to choose a marking 
for Xd. Note that we can modify the marking f : S → X in its homotopy class in such a way that f = id
in a small collar neighborhood of each boundary component. We extend f to a marking

f̃ : Sd → Xd

by setting

f̃(x) = J ◦ f ◦ J(x)

when x ∈ X. It is easy to check that the equivalence class [(Xd, f̃)] is independent of the choice of (X, f) ∈
[(X, f)].

We set Ψ([(X, f)]) = [(Xd, f̃)] and we use for simplicity the notation Ψ(X) = Xd. Then we have

Proposition 2.2. The map

Ψ : T (S) → T (Sd),

X �→ Ψ(X) = Xd

is an embedding.

Proof. An efficient way to see that Ψ is an embedding is to present Ψ in terms of Fenchel–Nielsen coordinates. 
We choose a maximal set {αi}3g−3+n+p

i=1 of mutually disjoint and non-homotopic simple closed curves in the 
interior of S, all of them non-trivial and not homotopic to boundary components. Denote the boundary 
components of S by {βj}pj=1. The map

T (S) → (R+ × R)3g−3+p+n × (R+)p,

X �→
(
�αi

(X), ταi
(X)

)
× �βj

(X),

where �αi
, �βj

are the length coordinates and ταi
the twist coordinates, defines the Fenchel–Nielsen coordi-

nates of T (S) (see Buser [3]).
For each 1 ≤ i ≤ 3g− 3 +n + p, let ᾱi ⊂ S be the mirror image of αi. Then {αi} ∪{βj} ∪{ᾱi} is a pants 

decomposition of Sd. Denote the Fenchel–Nielsen coordinates of T (Sd) by

(�αi
, ταi

) × (�βj
, τβj

) × (�ᾱi
, τᾱi

).

Then the map Ψ can be written in the Fenchel–Nielsen coordinates as

(�αi
, ταi

) × �βj
�→ (�αi

, ταi
) × (�βj

, 0) × (�αi
,−ταi

). (1)

Note that τᾱi
= −ταi

since the mirror image of a right twist deformation on X becomes a left twist 
deformation on X.
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Since the Fenchel–Nielsen coordinates are real-analytic global parameters for Teichmüller spaces, and 
the map (1) is a real-analytic embedding, it follows that Ψ gives a real-analytic embedding of T (S) into 
T (Sd). �

The map Ψ will be an isometric embedding if we equip T (S) with the arc metric and T (Sd) with 
Thurston’s metric [8]. We shall recall the definition of Thurston’s metric in §4 and the arc metric in §5.

We consider the involution J : Sd → Sd on T (Sd) as an element of the extended mapping class group 
(that is, we identity when needed a map with its homotopy class). We set

T sym(Sd) := {R ∈ T (Sd) | J(R) = R}.

It is not hard to see that there is a canonical identification Ψ(T (S)) 
 T sym(Sd).

3. Measured laminations and Thurston’s compactification

In this section, we recall the notion of measured lamination space and the Thurston compactification of 
Teichmüller space, and their extensions to hyperbolic surfaces with geodesic boundaries. Part of our results 
here is a continuation of work done in [8].

3.1. Measured laminations

In the setting of surfaces with boundary, we need to be precise on the definition of measured geodesic 
laminations that we deal with.

We endow S with a fixed hyperbolic structure. A geodesic lamination λ on S is a closed subset of S
which is the union of disjoint simple geodesics called the leaves of λ. With such a definition, a leaf L of λ
may be a boundary component of S. It may also be a geodesic ending at a cusp or a boundary component 
of S. Furthermore, L may meet a boundary component of S or spiral along it. If L is a geodesic with some 
end at a point p ∈ ∂S, we require that L is perpendicular to ∂S at p.

Let λ be a geodesic lamination on S with compact support. A transverse measure for λ is an assignment, 
for each embedded arc k on S which is transverse to λ and with endpoints contained in the complement 
of λ, of a finite Borel measure μ on k with the following properties:

(1) The support of μ is λ ∩ k.
(2) For any two transverse arcs k and k′ that are homotopic through embedded arcs which move their 

endpoints within fixed complementary components of μ, the assigned measures satisfy

μ(k) = μ(k′).

A measured geodesic lamination is a geodesic lamination λ together with a transverse measure. To sim-
plify notation, we shall sometimes talk about a “measured lamination” instead of a “measured geodesic 
lamination”. We shall denote such a measured lamination by (λ, μ) or, sometimes, μ for simplicity.

All the measured laminations we consider are assumed to have compact support. An example of a 
measured lamination is a weighted simple closed geodesic, that is, a simple closed geodesic α equipped with 
a positive weight a > 0. The measure disposed on a transverse arc k is then the sum of the Dirac masses 
at the intersection points between k and α multiplied by the weight a. In general, a lamination is a finite 
union of uniquely defined minimal sub-laminations, called its components. With the assumptions we made, 
each such component is of one of the following three types:

(i) a simple closed geodesic in S (such a simple closed geodesic can be a boundary component);
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(ii) a geodesic arc meeting ∂S at right angles;
(iii) a measured geodesic lamination in the interior of S, in which every leaf is dense.

This follows from our definition and from the corresponding result for surfaces without boundary.
Let ML(S) be the space of measured geodesic laminations on S. We shall equip ML(S) with the 

weak∗-topology, following Thurston [17] in the case of surfaces without boundary. We can choose a finite 
collection of generic geodesic arcs k1, · · · , km on S such that μn ∈ ML(S) converges to μ if and only if

max
i=1,··· ,m

∣∣ ∫
ki

dμn −
∫
ki

dμ
∣∣ → 0.

Here a geodesic arc is called generic if it is transverse to any simple geodesic on S. Note that almost every 
geodesic arc on S is generic [2].

We also recall that there are natural homeomorphisms between the various measured lamination spaces 
when the hyperbolic structure on the surface varies. Using this fact, it is possible to talk about a measured 
geodesic lamination on the surface without referring to a specific hyperbolic structure on it.

Let Sd be the double of S and ML(Sd) be the space of measured geodesic laminations on Sd. As before, 
denote the natural involution of Sd by J . For any subset A ⊂ S or A ⊂ S, we denote Ā = J(A). Moreover, 
if μ is a measure on an arc I on S or S, then we set μ̄(I) = μ(J(I)). From the above definition of mea-
sured geodesic lamination on S, there is a natural inclusion ψ from ML(S) into the space ML(Sd) defined 
by

ψ : ML(S) → ML(Sd)

(λ, μ) �→ (λ ∪ λ̄, μ + μ̄).

We will use the notation μd = (λ ∪ λ̄, μ + μ̄) for simplicity. Note that if μ is a weighted simple closed geodesic 
(α, a) where α is a boundary component of S and a the weight it carries, then μd = (α, 2a).

A measured lamination (respectively, hyperbolic structure, simple closed curve, etc.) on Sd is said to be 
symmetric if it is invariant by the canonical involution J . Denote the subset of all symmetric measured 
laminations in ML(Sd) by MLsym(Sd).

Lemma 3.1. The map ψ : ML(S) → ML(Sd) is continuous and we have a natural identification

MLsym(Sd) = ψ(ML(S)).

Proof. It is obvious that all elements in ψ(ML(S)) are symmetric.
Conversely, let μ̃ be a symmetric measured lamination in ML(Sd). Every component of μ which meets 

the fixed point locus of the involution J is, if it exists, a simple closed geodesic. Indeed, such a com-
ponent must intersect the fixed point locus perpendicularly, and no component which is not a simple 
closed geodesic can intersect the fixed point locus in this way, because of the recurrence of leaves. It 
follows that any sublamination of μ̃ which is connected (that is, which has only one component) that 
intersects ∂S is either a boundary component of S or a symmetric closed geodesic meeting ∂S at right 
angles. As a result, the restriction of μ̃ to S defines a unique measured lamination μ ∈ ML(S) such that 
μ̃ = ψ(μ) = μd.

The continuity of ψ follows directly from the definition of the weak∗-topology on measured lamination 
spaces. �



166 D. Alessandrini et al. / Topology and its Applications 208 (2016) 160–191
3.2. Rational measured laminations are dense in ML(S)

We say that a simple closed curve on a surface is essential if it is neither homotopic to a puncture 
nor homotopic to a point (but it can be homotopic to a boundary component). We let C(S) be the set of 
homotopy classes of essential simple closed curves on S.

In the case where ∂S is nonempty, an arc in S is the homeomorphic image of a closed interval which is 
properly embedded in S (that is, the interior of the arc is in the interior of S and the endpoints of the arc 
are on the boundary of S). All homotopies of arcs that we consider are relative to ∂S, that is, they keep 
the endpoints of arcs on the set ∂S (but they do not necessarily fix pointwise the points on ∂S). An arc is 
said to be essential if it is not homotopic to a subset of ∂S. We let A(S) be the set of homotopy classes of 
essential arcs on S.

Endowing S with a hyperbolic structure X, for any γ ∈ A(S) ∪ C(S), there is a unique geodesic γX in 
its homotopy class. It is orthogonal to ∂X at each intersection point, in the case where γ is an equivalence 
class of arc. We denote by �γ(X) the length of γX , and we call it the geodesic length of γ on X. This length 
only depends on the equivalence class of X in Teichmüller space.

The geodesic representation γ �→ γX defines a correspondence between R+ ×
(
A(S) ∪ C(S)

)
and the set 

of weighted simple closed geodesics and weighted simple geodesic arcs on S.

A measured lamination μ is rational if the support of μ consists of simple closed geodesics or simple 
geodesic arcs. Let us denote a rational measured lamination by∑

i∈I
aiγi,

where I is some finite set, ai > 0 and the γi ∈ A(S) ∪ C(S) are pairwise disjoint.
The set of weighted simple closed curves on Sd is dense in the space ML(Sd), and the geodesic length 

function, defined on weighted simple closed geodesics, extends to a continuous function on the space ML(Sd)
[17]. The situation is slightly different for surfaces with boundary.

In general, the set R+×A(S) ∪R+×C(S) is not dense in ML(S). For example, if μ = α+β where α is a 
simple closed curve in the interior of S and β is a boundary component of S, then μ cannot be approximated 
by a sequence in R+ × A(S) ∪ R+ × C(S). However, using multiple curves and arcs instead of curves and 
arcs suffices, and we have the following:

Lemma 3.2. The set of rational measured laminations on S is dense in ML(S).

Proof. Let μ ∈ ML(S). Each component of μ is either a simple closed geodesic, a geodesic arc or a minimal 
measured lamination in the interior of S. Each minimal component is contained in a geodesically convex 
subsurface, whose interior is disjoint from the other components. Thus, by Thurston’s theory, each minimal 
component can be approximated by a sequence of weighted simple closed geodesics in the interior of the 
subsurface. �
Proposition 3.3. For every X and Y in T (S), we have

sup
γ∈C(S)∪A(S)

�γ(Y )
�γ(X) = sup

μ∈ML(S)

�μ(Y )
�μ(X) . (2)

Proof. It is obvious that

sup �γ(Y )
� (X) ≤ sup �μ(Y )

� (X) .
γ∈C(S)∪A(S) γ μ∈ML(S) μ
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Let us set

ML1(S) = {μ ∈ ML(S) | �μ(X) = 1}

and

ML2(Sd) = {μ̃ ∈ ML(Sd) | �μ̃(X) = 2}.

The map ψ sends ML1(S) into ML2(Sd).
Since ML2(Sd) is compact and ψ(ML1(S)) is a closed subset of ML2(Sd), ML1(S) is a compact subset 

of ML(S). Therefore, there is a measured lamination μ0 ∈ ML1(S) that realizes the maximum:

sup
μ∈ML(S)

�μ(Y )
�μ(X) = �μ0(Y )

�μ0(X) . (3)

Consider the decomposition of μ0 into minimal components,

μ0 =
∑
i

aiνi.

Let K be the value of the supremum in (3). We have �μ0(Y ) = K�μ0(X), that is, since the length function 
is positively homogeneous, ∑

i

ai�νi
(Y ) = K

∑
i

ai�νi
(X).

Since �νi
(Y ) ≤ K�νi

(X) (from the definition), it follows that

�νi
(Y ) = K�νi

(X)

for each νi. As a result, any component of μ0 also realizes the supremum L.
As before, since each component of μ0 is either a simple closed geodesic, a geodesic arc or a minimal 

measured lamination in the interior of S, each of which can be approximated by a sequence in R+×
(
A(S) ∪

C(S)
)
, we conclude that

sup
γ∈C(S)∪A(S)

�γ(Y )
�γ(X) = sup

μ∈ML(S)

�μ(Y )
�μ(X) . �

Denote by B the set of all boundary components of S. In the paper [8], the following was shown:

Proposition 3.4.

sup
γ∈C(S)∪A(S)

�γ(Y )
�γ(X) = sup

γ∈B(S)∪A(S)

�γ(Y )
�γ(X) ≥ 1,

and the last inequality becomes an equality if and only if X = Y .

3.3. Thurston’s compactification

We need to recall some fundamental results of Thurston described in [5].
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Let R be a surface of genus g with n punctures. Let RC(R)
+ be the set of all nonnegative functions on C(R)

and PR
C(R)
+ the projective space of RC(R)

+ (that is, its quotient by the action of positive reals). We denote 

by π : RC(R)
+ → PR

C(R)
+ the natural projection. We endow RC(R)

+ with the product topology and PR
C(R)
+

with the quotient topology. There is a mapping L defined by

L : T (R) → R
C(R)
+ ,

X → (�α(X))α∈C(R).

The map π ◦ L : T (R) → PR
C(R)
+ is an embedding.

There is also a mapping I, defined by

I : ML(R) → R
C(R)
+ ,

μ �→ (i(μ, α))α∈C(R),

where

i(μ, α) = inf
α′∈[α]

∫
α′

dμ

is the intersection number. Then I is also an embedding.
Thurston showed that the closure of π ◦ L(T (R)) is compact and coincides with

π ◦ L(T (R)) ∪ π ◦ I(ML(R)).

We denote this closure by T (R). This is Thurston’s compactification of T (R). In the following, we shall 
identify T (R) with its image and the boundary of T (R) with PML(R), the space of projective classes of 
measured laminations on R.

Now we introduce an analogue of Thurston’s compactification for the Teichmüller space T (S), where S
is a surface with boundary. For simplicity, let C = C(S) and A = A(S).

Consider the map defined by the following composition:

T (S) L−→ R
C∪A
+

π−→ PR
C∪A
+ . (4)

Lemma 3.5. The map defined in (4) is injective.

Proof. Suppose that X, Y ∈ T (S) are mapped to the same point in PR
C∪A
+ . Then there exists a constant 

K > 0 such that

�γ(X) = K�γ(Y )

for all γ ∈ C ∪ A. Without loss of generality, we may assume that K ≥ 1. This implies that

sup
γ∈C(S)∪A(S)

�γ(Y )
�γ(X) ≤ 1.

It follows from Proposition 3.4 that X = Y . �
Similarly, we consider

ML(S) I−→ R
C∪A
+ . (5)
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Lemma 3.6. The map defined in (5) is injective.

Proof. Suppose that μ, ν ∈ ML(S) are mapped to the same point in RC∪A
+ . Let

μ = μ0 + μ1, ν = ν0 + ν1,

where μ0, ν0 are unions of components contained in the interior of S and μ1, ν1 are unions of components 
that belong to ∂S or intersect ∂S (some of these components might be empty).

Since μ1 and ν1 (if they exist) are unions of simple geodesic arcs or boundary components of S, it is easy 
to see that μ1 = ν1. For otherwise, it is not hard to find some element γ in C∪A such that i(μ1, γ) 
= i(ν1, γ).

On the other hand, since μ0 and ν0 are contained in the interior of the surface, by the same argument as 
for a surface without boundary which may have punctures, we have μ0 = ν0.

It follows that μ = ν. �
Remark 3.7. Both Lemmas 3.5 and 3.6 can be proved directly by the same arguments as [5, Exposés 6 
and 7]. Note that the images of T (S) and ML(S) in RC∪A

+ are disjoint. This follows from the fact that for 
each X ∈ T (S), the set of lengths �γ(X), γ ∈ C ∪ A is bounded below by a strictly positive constant (only 
depending on X); while for each μ ∈ ML(S) and for any ε > 0, there is some γ ∈ C ∪ A such that

i(μ, γ) < ε.

Here γ can be taken as a simple closed curve, a simple arc belonging to a component of μ (if it exists) or a 
simple closed curve quasi-transverse to μ (see [5, Proposition 8.1] for details).

By Lemma 3.5, Lemma 3.6 and Remark 3.7, we have an embedding

T (S) ∪ PML(S) → PR
C∪A
+ .

We have already identified T (S) with the subset T sym(Sd) of T (Sd) by the map Ψ and PML(S) with 
the subset PMLsym(Sd) of PML(Sd) by the map ψ. To give an idea of the image of T (S) ∪ PML(S) in 
PR

C∪A
+ , we shall show that the convergence of sequences in T (S) in the topology of PR

C∪A
+ is equivalent 

to the convergence in the topology of PR
C(Sd)
+ .

Let {Xn} be a sequence in T (S) and let {Xd
n} be the corresponding sequence in T sym(Sd).

Assume that Xd
n converges to a point μ̃ ∈ PML(Sd) in the topology of PR

C(Sd)
+ . Now an element of 

T (Sd) or PML(Sd) in PR
C(Sd)
+ is in T sym(Sd) or MLsym(Sd) if and only if as a function on the set of 

homotopy classes of curves C(Sd) it has the same values on pairs of curves that are images of each other by 
the involution J of Sd. Thus, since Xd

n is symmetric, μ̃ is also symmetric. It follows that Xn converges to μ

(which satisfies μ̃ = μd) in the topology of PR
C∪A
+ .

Conversely, assume that Xn converges to a point P in PR
C(S)∪A(S)
+ . Let μ̃ be any accumulation point of 

Xd
n in PMLsym(Sd). By definition, there exists a sequence cn > 0 such that (up to a subsequence)

cn�γ(Xd
n) → i(μ̃, γ)

for any γ ∈ C(Sd). Setting γ̄ = J(γ), we have

cn�γ̄(Xd
n) = cn�γ(Xd

n) → i(μ, γ) = i(μ, γ̄).

In particular, we have
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i(μ̃, γ) = i(μ̃, γ̄)

for any γ ∈ C(Sd). Such a μ̃ must be symmetric and unique (the restriction of μ̃ on S is identified with P ).
In conclusion, we have

Theorem 3.8. PML(S) is identified with the boundary of T (S) in PR
C∪A
+ . The embedding Ψ : T (S) → T (Sd)

extends to T (S) ∪ PML(S) such that Ψ|PML(S) = ψ.

3.4. Topology of the boundary

Let S be a surface of genus g, with p punctures and with b boundary components denoted by {B1, . . . , Bb}. 
A pants decomposition of S contains 3g − 3 + b + p pairwise disjoint interior curves which we denote by 
{C1, . . . , C3g−3+b+p}, decomposing the surface into 2g−2 +b +p pairs of pants. Such a pants decomposition 
induces a symmetric pants decomposition of the double Sd, with 6g − 6 + 3b + 2p curves denoted by

{C1, . . . , C3g−3+b+p, B1, . . . , Bb, C̄1, . . . , C̄3g−3+b+p},

dividing Sd into 4g − 4 + 2b + 2p pairs of pants.
The space of measured laminations ML(Sd) can be understood using the Dehn–Thurston coordinates 

associated with a pants decomposition.
Given a measured lamination μ, for every curve C in the symmetric pants decomposition of Sd, there are 

two associated coordinates, the length coordinate i(μ, C) ∈ R≥0 and the twist coordinate θ(μ, C) ∈ R (see 
Dylan Thurston [16] for details). This gives an element (i(μ, C), θ(μ, C)) ∈ R≥0 ×R. Consider the quotient 
R

[2] = R≥0 ×R/∼, where (0, t) ∼ (0, −t), and denote by DT (μ, C) the equivalent class of (i(μ, C), θ(μ, C))
in R[2]. Notice that R[2] is homeomorphic to R2. The Dehn–Thurston coordinates give a homeomorphism

ML(Sd) → (R[2])6g−6+3b+2p

μ → (DT (μ,C1), . . . , DT (μ,C3g−3+b+p), DT (μ,B1),

. . . , DT (μ,Bb), DT (μ, C̄1), . . . , DT (μ, C̄3g−3+b+p)).

The subspace ML(S) ⊂ ML(Sd) can be described by equations imposing symmetry on the coordinates:

∀j : i(μ,Cj) = i(μ, C̄j)

∀j : θ(μ,Cj) = −θ(μ, C̄j)

∀j : θ(μ,Bj) = 0 if i(μ,Bj) 
= 0.

The minus sign in the equation for the twist comes from the fact that the sign of the twist parameter 
depends on the orientation of the surface, and the mirror symmetry changes the orientation.

The first two equations mean that, for symmetric laminations, the coordinates associated with the curves 
C̄i can be recovered from the coordinates associated to Ci, so we can neglect the curves C̄i in the coordinates.

The third equation shrinks every factor R[2] corresponding to a boundary curve Bj into a line. Then we 
define the coordinate θ̂(μ, Bj) as i(μ, Bj) if i(μ, Bj) 
= 0, and as −|θ(μ, Bj)| if i(μ, Bj) = 0.

These considerations prove the following:

Proposition 3.9. The following map is a homeomorphism

ML(S) � μ → (DT (μ,C1), . . . , DT (μ,C3g−3+b+p), θ̂(μ, b1), . . . , θ̂(μ,Bb)) ∈ (R[2])3g−3+b+p × R
b.

In particular, ML(S) is homeomorphic to R6g−6+3b+2p, and PML(S) is homeomorphic to S6g−7+3b+2p.
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4. Thurston’s asymmetric metric

Given a set M , a nonnegative function d defined on M ×M is said to be a weak metric if it satisfies all 
the axioms of a distance function except the symmetry axiom. A weak metric d is said to be asymmetric if 
it is strictly weak, that is, if there exist two points x and y in M such that d(x, y) 
= d(y, x).

In this section, we first review Thurston’s metric and stretch maps on Teichmüller spaces of surfaces 
without boundary (with or without punctures).

Denote by Tg,n the Teichmüller space of a surface R of genus g with n punctures and without boundary. 
The space Tg,n is the space of marked hyperbolic structures on R. Thurston [18] defined an asymmetric 
metric dTh on Tg,n by setting

dTh(X,Y ) = inf
f

logLf (X,Y ), (6)

where the infimum is taken over all homeomorphisms f : X → Y homotopic to the identity map of R and 
where Lf (X, Y ) is the Lipschitz constant of f , that is,

Lf (X,Y ) = sup
x�=y∈S

dY
(
f(x), f(y)

)
dX

(
x, y

) .

An important result of Thurston [18] is that

dTh(X,Y ) = log sup
γ∈C(S)

�γ(Y )
�γ(X) . (7)

The asymmetric metric defined in (6) is Finsler, that is, it is a length metric which is defined by integrating 
a weak (asymmetric) norm on the tangent bundle of Tg,n along paths in Tg,n, and taking the infimum of 
lengths over all piecewise C1-paths. Thurston [18] also gave an explicit formula for the weak norm of a 
tangent vector V at a point X in Tg,n, namely,

‖V ‖Th = sup
λ∈ML

d�λ(V )
�λ(X) . (8)

Here, ML is the space of measured laminations on the surface, �λ : Tg,n → R is the geodesic length function 
on Teichmüller space associated to the measured lamination λ and d�λ is the differential of �λ at the point 
X ∈ Tg,n.

There is a (non-necessary unique) extremal Lipschitz homeomorphism that realizes the infimum in (6). 
Related to the extremal Lipschitz homeomorphism, there is a class of geodesics for Thurston’s metric called 
stretch lines, which we will describe below.

Let X be again a hyperbolic surface on R. A geodesic lamination λ on X is said to be complete if its com-
plementary regions are all isometric to ideal triangles. Associated with (X, λ) is a measured foliation Fλ(X), 
called the horocyclic foliation, whose equivalence class is characterized by the following three properties:

(i) Fλ(X) intersects λ transversely, and in each cusp of an ideal triangle in the complement of λ, the leaves 
of the foliation are pieces of horocycles that make right angles with the boundary of the triangle;

(ii) on the leaves of λ, the transverse measure for Fλ(X) agrees with hyperbolic arc length;
(iii) there is a non-foliated region at the center of each ideal triangle of X \ λ whose boundary consists of 

three pieces of horocycles that are pairwise tangent (see Fig. 1).

We denote by MF(λ) the space of measured foliations that are transverse to λ. Note that by the definition 
of a horocyclic foliation, we require the measured foliation in MF(λ) to be standard in a neighborhood 
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Fig. 1. The horocyclic foliation of an ideal triangle.

of any cusp of the surface. This means that its leaves are circles, and the transverse measure of any arc 
converging to the cusp is infinite. Thurston [18] proved the following fundamental result.

Theorem 4.1. The map φλ : Tg,n → MF(λ) defined by X �→ Fλ(X) is a homeomorphism.

The stretch line gtλ(X) directed by λ and passing through X ∈ T (R) is the line in Teichmüller space 
parameterized by

R � t �→ gtλ(X) = φ−1
λ (etFλ(X)).

We call a segment of a stretch line a stretch path. We also have a natural notion of stretch ray.
Stretch rays are geodesics for the Thurston metric: Suppose that λ0 is a measured lamination whose 

support is contained in a complete geodesic lamination λ. Let Γ(t) = gtλ(X). Then, for any two points Γs, 
Γt, s ≤ t on the stretch line, the distance dTh(Γs, Γt) is equal to t − s, and this distance is realized by

log �λ0(Γt)
�λ0(Γs)

.

It was observed by Thurston [18] that any measured lamination that realizes the maximum of

sup
μ∈ML

�μ(Xt)
�μ(Xs)

is supported by λ. The union of all the measured geodesic laminations that realize this maximum is also a 
measured geodesic lamination, called the stump of λ.

Thurston proved that any two points in Teichmüller space can be joined by a geodesic which is a finite 
concatenation of stretch paths, but in general such a geodesic is not unique. There also exist geodesics for 
Thurston’s metric that are not concatenations of stretch paths. Some of them are made explicit in [12]. This 
contrasts with Teichmüller’s theorem establishing the existence and uniqueness of Teichmüller geodesics 
joining any two distinct points.

Given X ∈ Tg,n and a complete geodesic lamination λ on X, we consider the map

Γ(t) : R≥0 → Tg,n
t �→ Γt

λ(X).

By definition, Γ(t) is the stretch ray directed by λ starting at X. Note that Γ(0) = X. There is a unique 
measured lamination μ which is equivalent to the horocyclic foliation Fλ(X). In fact, there is a one-to-one 
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correspondence between measured laminations and (equivalence class of) measured foliations on X. The 
measured lamination μ equivalent to Fλ(X) is totally transverse to λ (see Thurston [18, Proposition 9.4]).

In the following, we assume that λ has no closed leaves. It follows from this assumption that λ is 
obtained from its stump by adding finitely many infinite geodesics. Therefore any simple closed geodesic 
or any geodesic arc (connecting two simple closed geodesics β1, β2 with i(β1, β2) = 0 perpendicularly) is 
transverse to λ. We shall use this fact. Papadopoulos [10] proved the following:

Lemma 4.2. For any simple closed curve γ on R, there is a constant Cγ that depends only on γ such that

eti(μ, γ) ≤ �γ(Γ(t)) ≤ eti(μ, γ) + Cγ .

This implies that, as t → +∞, Γ(t) converges to [μ], the projective class of μ on the boundary of 
Thurston’s compactification.

When i(μ, γ) = 0, Lemma 4.2 says that �γ(Γ(t)) is bounded above by a constant Cγ (depending on γ). 
The following result of Théret [15] gives a further estimate for �γ(Γ(t)).

Lemma 4.3. Let γ be a simple closed curve on R with i(μ, γ) = 0. If γ is a leaf of μ with weight equal to ωγ, 
then

�γ(Γ(t)) ≤ 3|χ(R)|
sinh(etωγ/2) .

If γ is not a leaf of μ (in this case we set ωγ = 0), then

Bγ ≤ �γ(Γ(t)) ≤ Cγ ,

where Bγ and Cγ are positive constants that depend only on γ.

5. Geometry of the arc metric

In this section, we prove our main theorem. We first recall the definition of the arc metric. Then we intro-
duce the horofunction compactification of the arc metric. Finally, we show that Thurston’s compactification 
T (S) is homeomorphic to the horofunction compactification of the arc metric.

5.1. The arc metric

For any γ ∈ A(S) ∪C(S) and for any hyperbolic structure X on S, we let γX be the geodesic representative 
of γ (that is, the curve of shortest length in the homotopy class relative to ∂S). In the case where γ is an 
equivalence class of arcs, the geodesic γX is unique, and it is orthogonal to ∂X at each intersection point. 
We denote by �γ(X) the length of γX with respect to the hyperbolic metric considered. This length depends 
only on the equivalence class of X in Teichmüller space.

Let S be a hyperbolic surface with geodesic boundary. Let C = C(S) and A = A(S). In the paper [8], the 
authors defined an asymmetric metric, the arc metric, on T (S) by

d(X,Y ) = log sup
γ∈C∪A

�γ(Y )
�γ(X) . (9)

Relations between the arc metric and the Teichmüller metric are studied in the same paper.
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Remark 5.1. Note that the arcs are necessary in order to have a metric because if we use only the closed 
curves, then there exist X, Y such that (see [11])

log sup
γ∈C

�γ(Y )
�γ(X)

< 0.

The definition of the arc metric is a natural generalization of Thurston’s formula (7).

Proposition 5.2 ([8]). The map Ψ (defined in Section 2) gives an isometric embedding

(T (S), d) ↪→
(
T (Sd), dTh

)
,

that is,

d(X,Y ) = dTh(Xd, Y d).

5.2. Horofunction compactification

Let T (S) be the Teichmüller space of S endowed with the arc metric d. We set d̄(X, Y ) = d(Y, X). Then, 
d̄ is also an asymmetric metric on T (S). The topology of T (S) induced by the arc metric d is the same as 
the one induced by d̄, and it is defined as the topology induced by the genuine metric d + d̄ or δ = max{d, d̄}
(see [8, Theorem 4.4]).

Fix a base point X0 ∈ T (S). To each X ∈ T (S) we assign a function ΦX : T (S) → R, defined by

ΦX(Y ) = d(Y,X) − d(X0, X).

Let C(T (S)) be the space of continuous functions on T (S) endowed with the topology of locally uniform 
convergence. Then the map

Φ : T (S) → C(T (S)),

X �→ ΦX

is an embedding. The closure Φ(T (S)) is compact (this follows from the fact that T (S) is locally compact 
and the Arzelá–Ascoli theorem) and it is called the horofunction compactification of T (S). The horofunction 
boundary is defined to be

Φ(T (S)) − Φ(T (S)),

and its elements are called horofunctions.

Remark 5.3. For a general locally compact metric space (M, d), the horofunction compactification is defined 
by Gromov [9]. A good property of the horofunction compactification is that the action of the isometry 
group Isom(M, d) of M extends continuously to a homeomorphism on the horofunction boundary.

Note that our definition depends on the choice of a base point X0. However, if we let

Φ̃X = d(·, X) − d(Y0, X)

for another base point Y0, then the relation between ΦX and Φ̃X is described by

Φ̃X(·) = ΦX(·) − ΦX(Y0). (10)
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Equation (10) induces a natural homeomorphism between Ψ(T (S)) and Ψ̃(T (S)) and it induces a homeo-
morphism between the corresponding horofunction boundaries. As a result, we can embed the Teichmüller 
space T (S) into the quotient of C(T (S)) by the 1-dimensional subspace of constant functions, by identifying 
two functions in C(T (S)) whenever they differ by an additive constant. For convenience, in the following 
discussion, we shall fix a base point.

In the remaining part of this paper, we shall make the identification

PML ∼= {η ∈ ML(S) | �η(X0) = 1}.

Suppose that X ∈ T (S). From the definition,

ΦX(·) = log sup
η∈PML

�η(X)
�η(·)

− log sup
η∈PML

�η(X)
�η(X0)

.

For any γ ∈ ML, we set

Lγ(X) = �γ(X)/ sup
η∈PML

�η(X)
�η(X0)

.

Then

ΦX(·) = log sup
γ∈PML

Lγ(X)
�γ(·) . (11)

5.3. Convergence in Thurston’s compactification

Let (Xn) be a sequence in T (S) that converges to μ ∈ PML. From the definition, there exists a sequence 
of numbers (cn), cn > 0, such that for any γ ∈ ML, cn�γ(Xn) → i(μ, γ) as n → ∞. We claim that the 
following holds:

Lemma 5.4. With the above notation, we have:

Lγ(Xn) → i(μ, γ)/ sup
ν∈PML

i(μ, ν)
�ν(X0)

as n → ∞.

Proof. Note that

Lγ(Xn) = �γ(Xn)/ sup
η∈PML

�η(Xn)
�η(X0)

= cn�γ(Xn)/ sup
η∈PML

cn�η(Xn)
�η(X0)

.

By assumption, cn�η(Xn) → i(μ, η) (as n → ∞) for all η ∈ PML. By a continuity argument (the same 
proof as [20, Lemma 3.1]), we have cn�η(Xn) → i(μ, η) uniformly on PML. This implies that

lim
n→∞

sup
η∈PML

cn�η(Xn)
�η(X0)

= sup
η∈PML

i(μ, η)
�η(X0)

.

Since cn�γ(Xn) → i(μ, γ) as n → ∞, we are done. �
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For γ and μ in ML, we set

Lγ(μ) = i(μ, γ)/ sup
ν∈PML

i(μ, ν)
�ν(X0)

.

Note that the value Lγ(μ) is invariant by multiplication of μ by a positive constant, therefore we can also 
define Lγ(μ) by the same formula for μ in PML.

Proposition 5.5. A sequence (Xn) in T (S) converges to μ ∈ PML if and only if Lγ(Xn) converges to Lγ(μ)
for all γ ∈ ML.

Proof. We already showed that if (Xn) converges to μ, then Lγ(Xn) converges to Lγ(μ) for all γ ∈ ML.
Conversely, assume that Lγ(Xn) converges to Lγ(μ) for all γ ∈ ML. Then (Xn) is unbounded in T (S). 

Let (Yn) be any subsequence of Xn that converges to μ′ ∈ PML. Then Lγ(Yn) converges to Lγ(μ′) for all 
γ ∈ ML. By assumption, Lγ(μ′) = Lγ(μ), therefore

i(μ, γ)/ sup
ν∈PML

i(μ, ν)
�ν(X0)

= i(μ′, γ)/ sup
ν∈PML

i(μ′, ν)
�ν(X0)

.

Therefore, if we set

C = sup
ν∈PML

i(μ, ν)
�ν(X0)

/ sup
ν∈PML

i(μ′, ν)
�ν(X0)

,

then i(μ, γ) = Ci(μ′, γ) for all γ ∈ ML. This implies that μ = μ′ in PML. Since (Yn) is arbitrary, (Xn)
converges to μ. �
Corollary 5.6. A sequence (Zn) in T (S) converges to Z ∈ T (S) if and only if Lγ(Zn) converges to Lγ(Z)
for all γ ∈ ML.

Proof. This follows from Proposition 5.5 and a usual continuity argument. �
For μ ∈ PML(S), let Φ : PML → C(T (S)) be the function defined by

Φμ(·) = log sup
γ∈PML

Lγ(μ)
�γ(·) . (12)

The maps on PML defined by Equations (11) and (12) combine together and define a map

Φ : T (S) → C(T (S)),

Z �→ ΦZ .

By Corollary 5.6 and the compactness of PML, this map is continuous. In §7, we will prove that Φ
is injective on T (S). The same result for surface without boundary was proved by Walsh [20] by a direct 
method. Unfortunately, his argument does not apply here. Our proof is based on the inequality (Lemma 6.7) 
in the next section.
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6. An inequality for length functions

For any μ ∈ PML, let μd be the double of μ on Sd. We endow Sd with the hyperbolic structure Xd
0 and 

we choose a complete geodesic lamination λ which contains no closed leaves and which is totally transverse 
to μd. (Recall that this is equivalent to saying that μd can be represented by a measured foliation transverse 
to λ and trivial around each puncture.)

Denote by Γ(t) the stretch line in T (Sd) directed by λ and converging to μd in the positive direction, 
that is,

Γ(t) = φ−1
λ (etμd)

where φλ is the map in Theorem 4.1. For t ≥ 0, the hyperbolic structure Γ(t) might not be symmetric, and 
this is the reason for the technical work that follows.

Consider any α ∈ A. We realize α as a geodesic arc αt on Γ(t) whose endpoints are on two simple closed 
geodesics β1, β2 and which meets them perpendicularly. These closed geodesics are homotopic to the images 
in the hyperbolic surface Γ(t) of the boundary curves of S which contain the endpoints of α. They can either 
coincide in Γ(t) or be distinct, depending on whether they come from curves that coincide or are distinct 
in S.

Similarly, we can realize μ as a measured geodesic lamination μt on Γ(t). The support of μt lies on a 
totally geodesic subsurface of Γ(t) which is homeomorphic to S. The intersection number i(μ, α) is realized 
by the total mass of the intersection of αt with μt. Thus, we have:

i(μ, α) = I(μt, αt)

where

I(μt, αt) =
∫
αt

dμt.

We wish to prove an inequality similar to [10, Lemma 4.9]. The first step is to show that there is a 
constant C > 0 (depending only on the stretch line) such that for all α ∈ A,

eti(μ, α) − C ≤ �α(Γ(t)).

This is confirmed by Lemma 6.3 below.
We fix α in A and the hyperbolic structure Γ(t). We will use the same notation α to denote the geodesic 

representation of α on Γ(t). We suppose that α joins two simple closed geodesics β1, β2 perpendicularly. We 
set �(α) = �α(Γ(t)) and so on.

Remark 6.1. It seems that the constant C > 0 is necessary when α ∈ A. This is due to the fact that the 
horocyclic foliation Ft equivalent to etμd is not symmetric. A similar argument as in [10, Lemma 4.9] shows 
that for any α ∈ C, eti(μd, α) ≤ �α(Γ(t)). This can be done by showing that �α(Γ(t)) ≥ I(Ft, αt), where αt

is the geodesic representation of α on Γ(t).

6.1. Estimation of arc length in a pair of pants

The three geodesics β1, β2, α determine a geodesic pair of pants, denoted by P, which is isotopic to a 
tubular neighborhood of α ∪ β1 ∪ β2.
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Fig. 2. The pair of pants containing the arc α falls into two types. For each type, there are three cases illustrated in (A)–(C).

When β1 = β2 (and in this case we denote both curves by β), the boundary of P has three connected 
components: one is β and the other two will be denoted by γ1, γ2. It may happen that γ1 and γ2 coincide 
on the surface Sd.

If β1 
= β2, the boundary of P has three connected components, two of them are β1 and β2. We denote 
by γ the third one, so that ∂P = β1 ∪ β2 ∪ γ.

Remark 6.2. In both cases, some boundary component of P (such as γ, γ1 or γ2) may have zero length. We 
always consider a puncture to be a boundary component of length zero.

The intersection numbers of the three boundary components of P with μ are three positive numbers 
satisfying some equation. To simplify notation, we will always assume that indices are chosen such that 
i(μ, γ1) ≥ i(μ, γ2) in the first case, and that i(μ, β1) ≥ i(μ, β2) in the second case.

As indicated on the left of Fig. 2, the case where β1 = β2 is divided into three different subcases.

(A) the intersection number of μ with one boundary component of P is less than the sum of the intersection 
number of μ with the two others. (That is, the triangle inequality for the triple of intersection numbers 
holds.)

(B) i(μ, γ1) > i(μ, β) + i(μ, γ2).
(C) i(μ, β) > i(μ, γ1) + i(μ, γ2).

In each subcase, we have the following corresponding equation:

(A) i(μ, α) = 1
2 (i(μ, γ1) + i(μ, γ2) − i(μ, β)) + ωβ .

(B) i(μ, α) = i(μ, γ1) − i(μ, β) + ωβ .
(C) i(μ, α) = 0.

Here ωβ is the weight of β in μd. We clearly have:

i(μd, γ1) = i(μ, γ1), i(μd, γ2) = i(μ, γ2), i(μd, β) = 2i(μ, β).

Now we give a lower bound of �(α) in terms of �(β), �(γ1), �(γ2) for all cases (A)–(C). We need the 
following formula, which can be shown by combining the hyperbolic pentagon and hexagon formulae, see 
Buser [3, §2.4].

cosh2 ( 1
2�(α)

)
=

−1 + cosh2 ( 1
2�(β)

)
+ cosh2 ( 1

2�(γ1)
)

+ cosh2 ( 1
2�(γ2)

)
sinh2 ( 1

2�(β)
) + (13)

+
2 cosh

( 1
2�(β)

)
cosh

( 1
2�(γ1)

)
cosh

(1
2�(γ2)

)
2 ( 1 ) .
sinh 2�(β)
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We also need some elementary estimates:

(i) For x ≥ 0, 1
2e

x ≤ cosh(x) ≤ ex; 14e
2x ≤ cosh2(x) ≤ e2x.

(ii) If x > A > 0, then

1
2(1 − e2A)ex ≤ sinh(x) ≤ 1

2e
x;

if 0 < x < 1, then

x < sinh(x) < 2x.

(iii) For each γ ∈ C(Sd), we have (recalling that we denote by �(γ) the geodesic length of γ on Γ(t))

1
2 exp(1

2e
ti(μd, γ)) ≤ cosh(1

2�(γ)) ≤ exp(1
2�(γ)) ≤ exp(Cγ

2 ) exp(1
2e

ti(μd, γ)).

(iv) If γ ∈ C(Sd) is a leaf of μd (that is, ωγ > 0), then

�(γ) ≤ 12|χ(Sd)| exp(−1
2ωγe

t).

The inequality in (iii) follows from Lemma 4.2. The inequality in (iv) follows from Lemma 4.3 and the 
fact that 1/ sinh(x) ≤ 4/ex for x > 0.

Case (A). We rewrite formula (13) in the following way:

cosh2
(

1
2�(α)

)
= 2 coth

(
1
2�(β)

) cosh
( 1

2�(γ1)
)
cosh

( 1
2�(γ2)

)
sinh

( 1
2�(β)

) (1 + RA)

where the term RA is given by

−1 + cosh2 ( 1
2�(β)

)
+ cosh2 ( 1

2�(γ1)
)

+ cosh2 ( 1
2�(γ2)

)
2 cosh

( 1
2�(β)

)
cosh

( 1
2�(γ1)

)
cosh

( 1
2�(γ2)

) .

It is easy to see that RA > 0.
If ωβ = 0, then �(β) ≥ Bβ (see Lemma 4.3), and we have

1 < coth
( 1

2�(β)
)
≤ coth

(1
2Bβ

)
.

To give a lower bound for �(α), note that

exp (�(α)) ≥ cosh2 ( 1
2�(α)

)
≥ 2 coth

(
1
2�(β)

) cosh
( 1

2�(γ1)
)
cosh

( 1
2�(γ2)

)
sinh

( 1
2�(β)

)
≥ 2

cosh
( 1

2�(γ1)
)
cosh

(1
2�(γ2)

)
sinh

(1
2�(β)

)
≥ e

1
2 	(γ1)e

1
2 	(γ2)

1 	(β) = exp
(
�(γ1) + �(γ2) − �(β)

)
.

e 2 2 2 2
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By taking the logarithm of each side and applying Lemma 4.2, we have

�(α) ≥ �(γ1)
2 + �(γ2)

2 − �(β)
2

≥ et
1
2 (i(μ, γ1) + i(μ, γ2) − i(μ, β)) − Cβ

= eti(μ, α) − Cβ .

If ωβ > 0, we have i(μ, β) = 0. Moreover, the length �(β) is less than Cβ and it is less than 1 when t is 
sufficiently large. As a result, we may assume (using the second inequality in (ii)) that

sinh
(

1
2�(β)

)
≤ �(β).

Then we have

exp (�(α)) ≥ cosh2 ( 1
2�(α)

)
≥ 2 coth

(
1
2�(β)

) cosh
( 1

2�(γ1)
)
cosh

(1
2�(γ2)

)
sinh

(1
2�(β)

)
≥

cosh
( 1

2�(γ1)
)
cosh

( 1
2�(γ2)

)
sinh2 ( 1

2�(β)
)

≥
1
2 exp

( 1
2�(γ1) + 1

2�(γ2)
)

�(β)2 .

Applying (iv), we get

exp (�(α)) ≥
1
2 exp

( 1
2�(γ1) + 1

2�(γ2)
)

(12|χ(Sd)|)2 exp (−ωγet)
.

Taking the logarithm of each side, we have

�(α) ≥ 1
2�(γ1) + 1

2�(γ2) + ωγe
t − log(288|χ(Sd)|2)

≥ 1
2 (i(μ, γ1) + i(μ, γ2)) et + ωγe

t − log(288|χ(Sd)|2)

= eti(μ, α) − log(288|χ(Sd)|2).

Case (B). We can rewrite formula (13) in the following way:

cosh2 ( 1
2�(α)

)
=

cosh2 ( 1
2�(γ1)

)
sinh2 ( 1

2�(β)
) (1 + RB)

where the term RB > 0 is given by

−1 + cosh2 ( 1
2�(β)

)
+ cosh2 ( 1

2�(γ2)
)

+ 2 cosh
( 1

2�(β)
)
cosh

( 1
2�(γ1)

)
cosh

(1
2�(γ2)

)
2 ( 1 ) .
cosh 2�(γ1)
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Now, if wβ = 0, we have

exp(�(α)) ≥ cosh2 ( 1
2�(α)

)
≥

cosh2 ( 1
2�(γ1)

)
sinh2 ( 1

2�(β)
)

≥ exp (�(γ1) − �(β)) .

It follows that

�(α) ≥ �(γ1) − �(β)

≥ et(i(μ, γ1) − i(μ, β)) − Cβ

= eti(μ, α) − Cβ .

If, instead, wβ > 0, we have i(μ, β) = 0 and �(β) converges to zero as t tends to infinity. Applying (iv), 
we have (for t sufficiently large)

exp(�(α)) ≥
cosh2 ( 1

2�(γ1)
)

sinh2 ( 1
2�(β)

)
≥

1
4 exp (�(γ1))

(�(β))2

≥ 1
576|χ(Sd)|2 exp

(
�(γ1) + ωβe

t
)
.

Thus

�(α) ≥ �(γ1) + ωγe
t − log

(
576|χ(Sd)|2

)
≥ et (i(μ, γ1) + ωβ) − log

(
576|χ(Sd)|2

)
= eti(μ, α) − log

(
576|χ(Sd)|2

)
.

Case (C). Since i(μ, α) = 0, the inequality �(α) ≥ i(μ, α) is trivial.

Now we consider the case where β1 
= β2. As we did before, we separate the intersection pattern into 
three different cases:

(A′) the intersection number of μ with one boundary component of P is less than the sum of the intersection 
number of μ with the two others.

(B′) i(μ, β1) > i(μ, β2) + i(μ, γ).
(C′) i(μ, γ) > i(μ, β1) + i(μ, β2).

Each of the above cases corresponds respectively to

(A′) i(μ, α) = 1
2 (ωβ1 + ωβ2).

(B′) i(μ, α) = 1
2 (ωβ1 + ωβ2).

(C′) i(μ, α) = 1 (i(μ, γ) − i(μ, β1) − i(μ, β2)) + ωβ1 + ωβ2 .
2
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Recall the following formula:

cosh (�(α)) =
cosh

( 1
2�(γ)

)
+ cosh

( 1
2�(β1)

)
cosh

(1
2�(β2)

)
sinh

( 1
2�(β1)

)
sinh

( 1
2�(β2)

) . (14)

Case (A′) or (B′). We can rewrite formula (14) in the following way:

cosh (�(α)) = coth
( 1

2�(β1)
)
coth

( 1
2�(β2)

)
(1 + SA,B) (15)

where the term SA,B > 0 is given by

cosh
( 1

2�(γ)
)

cosh
( 1

2�(β1)
)
cosh

(1
2�(β2)

) .
Now, if wβ1 = wβ2 = 0, we have i(μ, α) = 0. Then it is obvious that �(α) ≥ i(μ, α).
If wβ1 = 0 and wβ2 > 0, we have 1 < coth(1

2�(β1)) ≤ coth(1
2Bβ1); while �(β2) goes to zero as t tends to 

infinity. We may assume (by considering t sufficiently large) that

coth(1
2�(β2)) ≥

1
sinh(1

2�(β2))
≥ 1

�(β2)
.

Applying (iv), we have

exp (�(α)) ≥ cosh (�(α))

≥ 1
�(β2)

≥ 1
12|χ(Sd)| exp

(
1
2ωβ2e

t

)
.

Thus

�(α) ≥ 1
2ωβ2e

t − log
(
12|χ(Sd)|

)
= eti(μ, α) − log

(
12|χ(Sd)|

)
.

The above argument applies also to the case where wβ1 > 0 and wβ2 = 0.
Now if wβ1 > 0 and wβ2 > 0, we have (for t sufficiently large)

coth(1
2�(βi)) ≥

1
sinh(1

2�(βi))
≥ 1

�(βi)
, i = 1, 2.

Applying (iv) again, we have

exp (�(α)) ≥ cosh (�(α))

≥ 1
�(β1)�(β2)

≥ 1
d 2 exp

(
1
ωβ1e

t + 1
ωβ2e

t

)
.
144|χ(S )| 2 2
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Thus

�(α) ≥ 1
2 (ωβ1 + ωβ2) et − log

(
144|χ(Sd)|2

)
= eti(μ, α) − log

(
144|χ(Sd)|2

)
.

Case (C′). We can rewrite formula (14) in the following way:

cosh (�(α)) =
cosh

( 1
2�(γ)

)
sinh

(1
2�(β1)

)
sinh

(1
2�(β2)

) (1 + SC)

where the term SC > 0 is given by

cosh
( 1

2�(β1)
)
cosh

(1
2�(β2)

)
cosh

( 1
2�(γ)

) .

In this case, we have a lower bound for �(α):

exp(�(α)) ≥ cosh (�(α))

≥
cosh

( 1
2�(γ)

)
sinh

( 1
2�(β1)

)
sinh

( 1
2�(β2)

) .
By comparing the above inequality with the estimates in Cases (A)–(C) and using a similar argument, one 
can show that �(α) is larger than

et
(

1
2 (i(μ, γ) − i(μ, β1) − i(μ, β2)) + ωβ1 + ωβ2

)
up to some constant (only depending on β1, β2). We omit the details.

We arrive to the following conclusion:

For any α ∈ A, considered as a geodesic arc in Γ(t) connecting two simple closed geodesics β1, β2, there 
are constants C, T > 0 (depending on β1 and β2) such that when t > T , �α(Γ(t)) ≥ eti(μ, α) − C.

Lemma 6.3. There is a constant C > 0 depending only on the stretch line such that for all α ∈ A,

eti(μ, α) − C ≤ �α(Γ(t)).

Proof. Since there are finitely many choices of the pair β1, β2 (note that here β1, β2 are boundary components 
of S), we can choose a uniform constant C such that the above conclusion holds for all �α(Γ(t)). �
Remark 6.4. One can apply the above argument to give an upper bound for �α(Γ(t)). That is, one can show 
that for each α ∈ A, there is a constant Cα > 0 (depending on α) such that

�α(Γ(t)) ≤ eti(μ, α) + Cα. (16)

To avoid long calculations, we will adopt an indirect method to certify (16) in the next section.

Remark 6.5. Our method is close in spirit to [5, Exposé 6, Appendix D]. It can be adapted to the case 
of a general measured lamination and general stretch line, by specifying an appropriate definition for the 
intersection number between a measured lamination and an arc.
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6.2. Key inequality

Let Γ(t) be a stretch line in T (Sd) as we have constructed above. If we restrict each hyperbolic structure 
Γ(t) to the subsurfaces S and S, then we have two families of hyperbolic structures on T (S) and T (S), 
respectively. We call them ΓU (t) and ΓL(t).

It follows directly from Lemma 6.3 that there is a constant C > 0 such that for any α ∈ A,

eti(μ, α) − C ≤ �α(ΓU (t)),

and

eti(μ̄, ᾱ) − C ≤ �ᾱ(ΓL(t)).

Note that the above inequalities also hold for any simple closed curve α ∈ C. In this case, we can take 
C = 0 (this is a consequence of Lemma 4.2).

Denote by ΓU (t) and ΓL(t) the mirror images of ΓU (t) and ΓL(t) respectively. Note that ΓU (t) ⊂ T (S)
and ΓL(t) ⊂ T (S).

Lemma 6.6. With the above notation, for any α ∈ C ∪ A, the following inequalities hold:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
eti(μ, α) − C ≤ �α(ΓU (t))
eti(μ, α) − C ≤ �ᾱ(ΓU (t))
eti(μ, α) − C ≤ �ᾱ(ΓL(t))
eti(μ, α) − C ≤ �α(ΓL(t)).

(17)

Lemma 6.6 provides a lower bound of the geodesic length of a simple closed curve or simple arc on S
along the path ΓU (t). In the following, we will give an upper bound.

Consider α ∈ C ∪A. Denote by αd the double of α. Then αd is either a simple closed curve or the union 
of two symmetric simple closed curves on Sd. Using Lemma 4.2, we have a constant Cα such that

�αd(Γ(t)) ≤ eti(μd, αd) + Cα.

Note that the sum of the lengths of the two arcs �α(Γ(t)) and �ᾱ(Γ(t)) is less than �αd(Γ(t)). It follows 
that

�α(Γ(t)) + �ᾱ(Γ(t)) ≤ eti(μd, αd) + Cα

= 2eti(μ, α) + Cα.

Combining the above inequalities with Lemma 6.6, we have{
�α(ΓU (t)) = �α(Γ(t)) ≤ eti(μ, α) + Cα + C

�ᾱ(ΓL(t)) = �ᾱ(Γ(t)) ≤ eti(μ, α) + Cα + C.
(18)

We summarize the above in the following key lemma, which is a generalization of [10, Lemma 4.9].

Lemma 6.7. There exists a path Xt, t ∈ [0, +∞) in T (S) such that each α ∈ C ∪ A satisfies

eti(μ, α) − C ≤ �α(Xt) ≤ eti(μ, α) + Cα,
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where C ≥ 0 is a uniform constant and Cα > 0 is a constant depending only on α. When α ∈ C, we can 
take C = 0.

Note that the path Xt converges to the point μ in Thurston’s compactification.

7. Proof of Theorem 1

7.1. Ergodic decomposition of a measured lamination

Before we prove the main theorem, we need a generalization of [20, Lemma 6.4].
Recall that each measured lamination μ on S can be decomposed into a finite union of components, each 

of which is either a simple closed geodesic, a simple geodesic arc or a minimal component (each half-leaf is 
dense).

A measured lamination μ is said to be uniquely ergodic if the transverse measure of μ is the unique 
measure on the same support up to a scalar multiple.

More generally, let μ be an arbitrary minimal measured lamination on S. There exist finitely many 
invariant transverse measures μ1, · · · , μp on μ such that

• μi is ergodic for each i.
• Any invariant transverse measure ν on μ can be written as ν =

∑
i aiμi for ai ≥ 0.

It follows that any measured lamination μ has a unique decomposition as

μ =
∑

ajμj , aj ≥ 0

where each μj is either a simple closed curve, a simple geodesic arc or a minimal geodesic lamination with 
an ergodic measure. Such a decomposition is called the ergodic decomposition of μ, see e.g. [7].

The following lemma is proved by Walsh [20, Lemma 6.4] for surfaces without boundary. His proof works 
as well for surfaces with boundary.

Lemma 7.1. Let μ =
∑

j μj be the ergodic decomposition of μ ∈ PML. Then

sup
γ∈C∪A

i(ν, γ)
i(μ, γ) = max{fj}

if ν =
∑

j fjμj. If ν cannot be expressed as 
∑

j fjμj, fj ≥ 0, then the supremum is +∞.

7.2. Φ is injective

We will use our construction in Section 6 and some observations on the fine structure of the measured 
lamination μ.

Let μ =
∑

μi be the ergodic decomposition of μ. We choose a measured lamination μ̂ which contains μ
as a sublamination (see Fig. 3 where α denotes an arc that intersects μ̂), by using the following steps:

(I) If β is a boundary component of S disjoint from μ, then we add β to μ. We get a measured lamination 
μ0 such that

μ0 = μ +
m∑
j=1

βj

where βj , j = 1, · · · , m are boundary components of S which are disjoint from μ.
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Fig. 3. The measured lamination μ̂ is an extension of μ such that any geodesic arc on S not contained in μ̂ is transverse to some 
simple leaf of μ̂.

(II) By definition, S has p (p ≥ m) boundary components. The numbering is such that for each m + 1 ≤
j ≤ p, there is at least an arc contained in μ that intersects βj . We construct a new measured lamination 
μ1 by adding to μ0 an arc α1 disjoint from μ0 (if such an arc exists). Inductively, we construct a new 
measured lamination μj by adding to μj−1 an arc αj disjoint from μj−1. After a finite number of steps, 
we get a measured lamination μk with the following property:

any arc α ∈ A not contained in μk either intersects a simple leaf (an arc or boundary component) 
of μk or intersects μ.

(III) By cutting the surface S along all the arcs contained in μk, we get a finite union of connected com-
ponents, each of which is either a polygon (may be a punctured polygon) or a surface with piecewise 
geodesic boundary components. Let G be such a component with piecewise geodesic boundaries. Let 
C be a boundary component of G. Then C is either a simple closed geodesic contained in μk or a finite 
concatenation of geodesic arcs.
In the latter case, each geodesic segment of C either comes from an arc in μk (contained as a leaf) or a 
boundary component of S. Note that C is homotopic to a simple closed curve γ on S, and the geodesic 
representation of γ is contained in or disjoint from μk. We will add such a γ to μk. The resulting 
measured lamination, denote by μ̂ is the one we want. Note that the choice of μ̂ is not necessarily 
unique.

It follows from the above construction that for any α ∈ A ∪ B, either α is a leaf of μ̂ or α intersects a 
simple leaf of μ̂.

Remark 7.2. As we will see later, the refinement (or enlargement) μ̂ of μ has better properties when we 
stretch along a complete geodesic lamination on Sd transverse to μ̂d, the double of μ̂. Going forward the 
stretch line, any simple arc or boundary curve that intersects μ̂d becomes uniformly large.

Proposition 7.3. The map

Φ : T (S) �→ C(T (S)),

Z �→ ΦZ

is injective.

Proof. We separate the proof into three steps.
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I. The restriction Φ|T (S) is injective, since for any X ∈ T (S), we have

inf
Y ∈T (S)

ΦX(Y ) = −d(X0, X)

and the infimum is exactly obtained at X.

II. To show that for any Y ∈ T (S) and μ ∈ PML, ΦY 
= Φμ, we observe that

inf
X∈T (S)

Φμ(X) = −∞.

In fact, there is a family of hyperbolic structures Xt on S such that Φμ(Xt) → −∞. As we did in 
Section 6, we define by

Γ : t ∈ R+ → T (Sd)

the stretch line converging to the double of μ̂. We set Xt = ΓU (t).
By Lemma 6.7, there is a constant C > 0 such that for each α ∈ C ∪ A,

eti(μ̂, α) ≤ �α(Xt) + C.

When α ∈ C, we can take C to be zero. Let N > 0 be a sufficiently large constant such that C/N < 1. Since 
�μ̂(Xt) → 0 as t → ∞, by the Collar Lemma, the length of any geodesic arc intersecting some simple leaf of 
μ̂ is uniformly large as soon as t is sufficiently large. By the construction of μ̂, we have

�α(Xt) ≥ N, ∀ α ∈ A ∪ B, i(μ̂, α) > 0, t ≥ T (N).

Denote

C0 = log sup
η∈PML

i(μ, η)
�η(X0)

.

It follows from the definition of Φμ that

Φμ(Xt) = log sup
η∈PML

i(μ, η)
�η(Xt)

− C0

≤ log sup
α∈A∪B

i(μ̂, α)
�α(Xt)

− C0

= log sup
α∈A∪B

eti(μ̂, α)
et�α(Xt)

− C0

≤ log sup
α∈A∪B,i(μ̂,α)>0

�α(Xt) + C

et�α(Xt)
− C0

≤ −t + C/N − C0, t > T (N).

As a result, Φμ(Xt) → −∞.

III. It remains to show that for any μ 
= ν, Φμ 
= Φν . Recall that we made the identification

PML ∼= {η ∈ ML | �η(X0) = 1}.
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Without loss of generality, we assume that

log sup
η∈PML

i(μ, η)
�η(X0)

≥ log sup
η∈PML

i(ν, η)
�η(X0)

.

Then for any X ∈ T (S), we have

Φν(X) − Φμ(X) ≥ log sup
η∈PML

i(ν, η)
�η(X) − log sup

η∈PML

i(μ, η)
�η(X) . (19)

We conclude the proof by showing the following lemma, which implies that Φμ 
= Φν . �
Lemma 7.4. There exists a point Y in T (S) such that

log sup
η∈PML

i(ν, η)
�η(Y ) > log sup

η∈PML

i(μ, η)
�η(Y ) .

Proof of Lemma 7.4. Let μ̂ be the refinement of μ constructed above. We can write μ̂ as

μ̂ = μ + ζ.

Suppose that �ζ(X0) = L. Then we set

μ̂ε = (1 − ε)μ + ε

L
ζ.

It follows that μ̂ε ∈ PML for each 0 ≤ ε ≤ 1. We first claim that we can find 0 < ε < 1 and some γ0 ∈ C∪A
such that

i(ν, γ0)
i(μ̂ε, γ0)

>
1

1 − ε
.

We now prove this claim. As above, we assume that

μ̂ε = (1 − ε)
∑
j

μj + ε
∑
k

ζk.

There are two cases. If ν cannot be expressed as 
∑

j fjμj +
∑

k gkζk, fj with gk ≥ 0, then (by Lemma 7.1)

sup
γ∈C∪A

i(ν, γ)
i(μ̂ε, γ) = ∞.

In this case, for any given 0 < ε < 1, there is some γ0 ∈ C ∪ A such that

i(ν, γ0)
i(μ̂ε, γ0)

>
1

1 − ε
.

Otherwise,

ν =
∑

fjμj +
∑

gkζk, fj for some gk ≥ 0.

j k
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If there is some gk > 0, then we choose 0 < ε < 1 sufficiently small such that gj/ε > 1
1−ε . It follows from 

Lemma 7.1 that there is some γ0 ∈ C ∪ A such that

i(ν, γ0)
i(μ̂ε, γ0)

>
1

1 − ε
.

In the case where ν =
∑

j fjμj , since we assumed that �μ(X0) = �ν(X0) = 1, we have

∑
j

fj�μj
(X0) =

∑
j

�μj
(X0) = 1.

There is some fj > 1. It follows again from Lemma 7.1 that there is some γ0 ∈ C ∪ A such that

i(ν, γ0)
i(μ̂ε, γ0)

≥ fj
1 − ε

>
1

1 − ε
.

Fix 0 < ε < 1 as above. We assume that

i(ν, γ0)
i(μ̂ε, γ0)

>
1 + δ

1 − ε
(20)

for some sufficiently small constant δ > 0.
Like in our proof in Step II, we denote by

Γε : t ∈ R+ → T (Sd)

the stretch line converging to the double of μ̂ε. We set Xt = ΓU
ε (t). By the inequality between intersection 

number and hyperbolic length, we have

sup
η∈PML

i(μ̂ε, η)
e−t�η(Xt)

= sup
α∈C∪A

i(μ̂ε, η)
e−t�α(Xt)

≤ max{1, sup
α∈A,i(μ̂ε,α)>0

i(μ̂ε, η)
e−t�α(Xt)

}.

Let N > 0 be a sufficiently large constant such that C/N < δ
3 . Then (by using the Collar Lemma and 

the construction of μ̂ε again) we have

�α(Xt) ≥ N, ∀ α ∈ A, i(μ̂ε, α) > 0, t ≥ T (N).

It follows that

sup
η∈PML

i(μ, η)
e−t�η(Xt)

≤ 1
1 − ε

sup
η∈PML

i(μ̂ε, η)
e−t�η(Xt)

≤ 1
1 − ε

max{1, sup
α∈A,i(μ̂ε,α)>0

i(μ̂ε, η)
e−t�α(Xt)

}

≤ 1
1 − ε

max{1, sup
α∈A,i(μ̂ε,α)>0

e−t�α(Xt) + e−tC

e−t�α(Xt)
}

≤
1 + C

N

1 − ε

≤ 1 + δ/3
.
1 − ε
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As a result, for t ≥ T (N) we have

log sup
η∈PML

i(ν, η)
�η(Xt)

− log sup
η∈PML

i(μ, η)
�η(Xt)

= log sup
η∈PML

i(ν, η)
e−t�η(Xt)

− log sup
η∈PML

i(μ, η)
e−t�η(Xt)

≥ log i(ν, γ0)
i(μ̂ε, γ0) + e−tCγ0

− log
1 + δ

3
1 − ε

.

By (20), when t is sufficiently large, we have

log i(ν, γ0)
i(μ̂ε, γ0) + e−tCγ0

> log
1 + 2δ

3
1 − ε

.

This proves Lemma 7.4. �
The following result is a consequence of the proof of Proposition 7.3.

Lemma 7.5. Let (Xn) be a sequence in T (S), Y ∈ T (S) such that ΦXn
(·) → ΦY (·). Then Xn → Y in T (S). 

In particular, (Xn) cannot escape to infinity in T (S).

Proof. The lemma is a standard result in a locally compact geodesic metric space, see Ballmann [1, Chap-
ter II]. For the Thurston metric on the Teichmüller spaces of surfaces without boundary, see Walsh [20, 
Proposition 2] for a proof.

In the case of surfaces with boundary, note that, up to a subsequence, (Xn) converges to a point P ∈ T (S). 
If P = μ ∈ PML, then by continuity (see the discussion after Corollary 5.6), ΦXn

→ Φμ. By assumption, 
ΦXn

→ ΦY . Thus Φμ = ΦY , a contradiction. If P ∈ T (S), it is obvious that P = Y . �
Remark 7.6. Let (Xn) be a sequence in T (S) converging to μ ∈ PML. Then by the continuity of Φ, we 
have

ΦXn
(·) → Φμ(·)

uniformly on any compact subset of T (S). Note that

inf
X∈T (S)

ΦXn
(X) = −d(X0, Xn) → −∞.

However, this does not imply

inf
X∈T (S)

Φμ(X) = −∞

directly, because the infimum may not be attained in T (S). It would be interesting to study the level sets 
of the horofunctions.

Remark 7.7. The proof of Proposition 7.3 applies to the Teichmüller space of surfaces without boundary. 
This is based again on Lemma 4.2. Thus we get a new proof for [20, Theorem 3.6]. However, the argument 
in [20] does not work for surfaces with boundary. Note that in contrast with surfaces without boundary, the 
set of uniquely ergodic measured laminations on a surface S with boundary is not dense in ML(S).
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Theorem 7.8. The map Φ establishes a homeomorphism between Thurston’s compactification T (S) and the 
horofunction compactification.

Proof. We showed that Φ : T (S) → C(T (S)) is injective and continuous. Since T (S) is compact, any 
embedding from a compact space to a Hausdorff space is a homeomorphism onto its image. As a result, 
Φ(T (S)) is a compact subset of C(T (S)). Since the horofunction compactification is the closure of Φ(T (S)), 
it must be equal to Φ(T (S)). �
Remark 7.9. As we mentioned in the introduction, one of the remaining questions is to understand the 
isometry group of the arc metric. One step to handle this question is to calculate the “detour cost” distance 
between any two measured laminations on Thurston’s boundary. We will go into details of this calculation 
in future work.

Several questions remain open for surfaces with boundary and we mention the following:

Questions 7.10. (a) Is the arc metric Finsler? If yes, what is the Finsler norm?
(b) Construct families of geodesic between any two points on Teichmüller space, analogous to concate-

nations of stretch lines in the case without boundary.
(c) What is the relation between the arc metric and the extremal Lipschitz maps between hyperbolic 

structures?

Finally, we note that by recent works of Danciger, Guéritaud and Kassel, the deformation theory of 
surfaces with boundary is related to Margulis spacetimes in Lorentz geometry [4]. Extremal Lipschitz maps 
are generalized to geometrically finite hyperbolic manifolds of dimension n ≥ 2, see [6].
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